Skip to main content

Final Year Project

Course

Mechatronics Engineering

Subject

Final Year Project

Type

Final Year Project (FP)

Academic year

4

Credits

12.0

Semester

1st and 2nd

Coordination

  • Anna Maria Dalmau Roda

Objectives

The Final Degree Thesis (TFG) is a subject in the last year of undergraduate studies that is essential to obtain a degree in any specialty.

The TFG aims to:

  • Elaborate an academic work.
  • Consolidate technological knowledge received in the study plan.
  • Participate in situations specific to a professional activity.

Learning outcomes

  1. It applies technical resources to develop technical office projects and integrates different technologies that are part of mechatronics.
  2. It consolidates and interrelates technological concepts from various subjects of the degree in Mechatronic Engineering.
  3. Write technical information in English regarding the specialty of the degree.
  4. Critically analyze the results obtained.
  5. Effectively presents orally the results obtained in practices and assignments.
  6. Uses language (verbal and non-verbal) appropriately in personal and professional interaction in Catalan, Spanish and English.
  7. It collects and interprets data and information on which it bases its conclusions, which include reflections on matters of a social, scientific or ethical nature.
  8. Use language that respects gender, both in oral and written productions.

Skills

General skills

  • Be prepared to overcome adversity in professional activity and learn from mistakes in order to integrate knowledge and enhance one's preparation.
  • Show a positive attitude to lifelong learning, innovation, creating value and acquiring knowledge.

Specific skills

  • Individually carry out an original project in the field of mechatronics engineering, of professional quality, bringing together competencies acquired during the degree course. Draft a report, and submit and defend the project before a university panel.
  • Know about and apply the principles of analogue and digital electronics, and be able to use the resources of electronic instrumentation and the principles of digital electronics in microprocessors. Apply knowledge of power electronics to mechatronics engineering and design electronic analogue, digital and power systems in the field of mechatronics engineering.
  • Recognize and understand spatial vision and graphic representation techniques, using traditional methods of metric geometry and descriptive geometry, and computer-aided design applications, applying standardization and projection systems.
  • Understand and apply the basic principles of use and programming of computers, operating systems, databases and computer programs with application in engineering, and know about real-time systems and distributed computer systems, and be able to install, configure and use industrial communication networks, using advanced computer tools for industrial computing and communication.
  • Understand material structures, properties and processing systems, relating microstructure, and synthesis or processing and properties of materials. Plan and analyze tests and interpret results, and apply the principles of strength of materials and elasticity to the behavior of real solids. Understand the principles of strength of materials, failure theory and fatigue problems.
  • Understand the principles of applied thermodynamics and heat transfer in order to solve engineering problems, and apply the basic principles of fluid mechanics to solve problems in the field of mechatronics engineering. Analyze and calculate piping, channels and fluid systems using thermal engineering applications.
  • Understand the principles of circuit theory and electrical machines, apply them in design and use electric drives and switchgear. Calculate and design electrical installations of low, medium and high voltage.
  • Use dynamic system modeling tools and simulation techniques. Understand and apply the properties of sensors, actuators and signal conditioners, in order to program programmable robots, numerical control and robots to develop complex robotic systems that improve processes and the final product.
  • Work in a multilingual, multidisciplinary environment, and give oral presentations and write reports in English in the field of science and engineering.

Basic skills

  • Students can communicate information, ideas, problems and solutions to both specialists and non-specialists.
  • Students have developed the learning skills necessary to undertake further studies with a high degree of independent learning.
  • Students have the ability to gather and interpret relevant data (usually within their field of study) in order to make judgments that include reflection on relevant social, scientific and ethical issues.

Core skills

  • Be a critical thinker before knowledge in all its dimensions. Show intellectual, cultural and scientific curiosity and a commitment to professional rigor and quality.
  • Interact in international and worldwide contexts to identify needs and and new contexts for knowledge transfer to current and emerging fields of professional development, with the ability to adapt to and independently manage professional and research processes.
  • Traducción automatica pendiente.

Content

  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.

Evaluation

Traducción automatica pendiente.

  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
    • Traducción automatica pendiente.
    • Traducción automatica pendiente.
  • Traducción automatica pendiente.
    • Traducción automatica pendiente.
    • Traducción automatica pendiente.

Methodology

Traducción automatica pendiente.

Traducción automatica pendiente.

  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.
  • Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente. Traducción automatica pendiente.Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Traducción automatica pendiente.

Bibliography

Bibliography

  • Coromina, E; Casacuberta, X; Quintana, D (2000). El treball de recerca: Procés d'elaboració, memòria escrita, exposició oral i recursos. Eumo Editorial.
  • Ferrer, V; Carmona, M; Sòria V (2012). El trabajo de Fin de Grado: Guia para estudiantes, docentes y agentes colaboradores. Mc Graw Hill.
  • Rigo, A; Gesnescà, G (2000). Tesis i treballs: Aspectes formals. Eumo Editorial.
  • Sancho, J. (2014). Com escriure i presentar EL MILLOR TREBALL ACADÈMIC: Guia pràctica per estudiants i professors. Eumo Editorial.

Contact us

If you have a question, we have the answer

Contact